پیش بینی زمانی و مکانی سطح آب زیرزمینی با استفاده از روش های هوش مصنوعی و زمین آمار (مطالعه موردی: آبخوان دشت دوزدوزان)
نویسندگان
چکیده
نبود منابع آب سطحی دائمی در بسیاری از نقاط کشور باعث اضافه برداشت آب از منابع محدود زیرزمینی شده است. در دشت دوزدوزان که در حوضه آبریز دریاچه ارومیه قرار دارد، بهدلیل عدم جریان سطحی دائمی برداشت بیرویه از منابع آب زیرزمینی باعث ایجاد متوسط افت 76 سانتیمتر در سال شده است. هدف از این تحقیق پیشبینی سطح آب زیرزمینی در این دشت با استفاده از روشهای هوش مصنوعی و زمین آمار میباشد. در ابتدا با استفاده از روش خوشهبندی مرتبهای (hca) پیزومترها دستهبندی شدند. با انجام آنالیز حساسیت، دادههای ماهانه سطح آب، بارش و تبخیر هرکدام با یک تأخیر زمانی طی دوره 10 ساله (91-82) بهعنوان ورودیهای مدل انتخاب شدند. پس از نرمالسازی دادهها مدلسازی با شبکههای عصبی (anns) انجام شد. به منظور بررسی بیشتر شبیهسازی با مدل فازی ساگنو (sfl) نیز انجام شد. برای مقایسه نتایج دو مدل شاخصهای آماری جذر میانگین مربعات خطا و ضریب تبیین بهکار گرفته شدند. با توجه به برتری مدل anns، مدل کریجینگ و کوکریجینگ عصبی برای پیشبینی مکانی سطح ایستابی انتخاب شدند و پیش بینی مکانی با هر دو مدل انجام شد. نتایج نشان داد که مدل کوکریجینگ با در نظر گرفتن پارامتر ثانویه توپوگرافی نسبت به مدل کریجینگ پیشبینی دقیقتری داشته است. براساس نتایج بهدست آمده با افزایش بازه زمانی پیش بینی خطای مدل ترکیبی (کوکریجینگ عصبی) افزایش مییابد که بیشتر بهدلیل افزایش خطای مدل شبکه عصبی مصنوعی با افزاییش بازه زمانی پیشبینی میباشد و خطای مدل زمین آمار ( کوکریجینگ) نامحسوس بهنظر میرسد.
منابع مشابه
پیشبینی زمانی و مکانی سطح آب زیرزمینی با استفاده از روشهای هوش مصنوعی و زمین آمار (مطالعه موردی: آبخوان دشت دوزدوزان)
نبود منابع آب سطحی دائمی در بسیاری از نقاط کشور باعث اضافه برداشت آب از منابع محدود زیرزمینی شده است. در دشت دوزدوزان که در حوضه آبریز دریاچه ارومیه قرار دارد، بهدلیل عدم جریان سطحی دائمی برداشت بیرویه از منابع آب زیرزمینی باعث ایجاد متوسط افت 76 سانتیمتر در سال شده است. هدف از این تحقیق پیشبینی سطح آب زیرزمینی در این دشت با استفاده از روشهای هوش مصنوعی و زمین آمار میباشد. در ابتدا با است...
متن کاملپیش بینی سطح آبهای زیرزمینی با استفاده از روش های هوش مصنوعی ( مطالعه موردی: دشت دوزدوزان)
مدل کردن سفره آبهای زیرزمینی، به منظور پیش بینی سطح ایستابی از نظر مطالعات هیدروژئولوژی و مدیریتی، ایجاد سازه های مهندسی، مصارف کشاورزی و بدست آوردن آبهای زیرزمینی با کیفیت بالا از اهمیت بالایی برخوردار است. در دهه های اخیر به سبب پیچیدگی و خصوصیات غیر خطی سیستمهای آب زیرزمینی مدلهای هوش مصنوعی در مدلسازی و مدیریت آبخوان ها مورد آزمایش قرار گرفته اند. هدف این تحقیق مقایسه مدلهای مختلف هوش مصنوع...
15 صفحه اولتخمین سطح آب زیرزمینی با استفاده از روش ترکیبی زمین آمار و شبکههای عصبی مصنوعی (مطالعه موردی: دشت شهرکرد)
از اساسیترین موارد در مدیریت کمی منابع آب زیرزمینی تخمین سطح آب با استفاده از دادههای برداشت شده از شبکه چاههای مشاهدهای میباشد. هدف این تحقیق میانیابی سطح آبزیرزمینی با استفاده از الگوریتم ترکیبی زمین آمار و شبکههای عصبی مصنوعی میباشد و دشت شهرکرد به عنوان نمونه انتخاب شده است. بعد ازانتخاب دو ماه اسفند 1385 و شهریور 1388 به عنوان ماههای دارای به ترتیب حداکثر و حداقل سطح آب (طی ...
متن کاملتغییرات مکانی میزان نیترات در آب زیرزمینی با استفاده از زمین¬آمار (مطالعه موردی: دشت کردان)
بررسی تغییرات مکانی پارامترهای کیفی آبهای زیرزمینی در شناخت وضعیت کیفی آبخوان، منابع آلوده کننده و تعیین مناسبترین راهکارهای مدیریتی از اهمیت ویژهای برخوردار است. روشهای زمینآماری و GIS میتوانند در این راستا ابزار مفیدی باشند. با توجه به کاربریهای متعدد حوضه کردان، پارامترهای کیفی در آب زیرزمینی این حوضه میتواند دارای تغییرات مکانی قابل توجهی باشد. بر این اساس نمونههای آب زیرزمینی 52 چ...
متن کاملپیش بینی زمانی و مکانی تراز آب زیرزمینی دشت داورزن
هدف از این پژوهش تخمین مقدار تراز آب زیرزمینی در نقاط مختلف دشت داورزن واقع در استان خراسان رضوی در یک ماه آینده است. جهت پیش بینی زمانی از روش پرسپترون چندلایه شبکه عصبی و برای پیش بینی مکانی از روش کریجینگ استفاده شده است. داده های ورودی شامل سری زمانی تراز آب زیرزمینی است که به مدت هشت سال از مهر 82 تا اسفند 89 به صورت ماهیانه اندازهگیری شده است. ابتدا به منظور تعیین میزان دقت مدل، ت...
متن کاملتخمین سطح آب زیرزمینی با استفاده از روش ترکیبی زمین آمار و شبکه های عصبی مصنوعی (مطالعه موردی: دشت شهرکرد)
از اساسیترین موارد در مدیریت کمی منابع آب زیرزمینی تخمین سطح آب با استفاده از دادههای برداشت شده از شبکه چاههای مشاهدهای میباشد. هدف این تحقیق میانیابی سطح آبزیرزمینی با استفاده از الگوریتم ترکیبی زمین آمار و شبکههای عصبی مصنوعی میباشد و دشت شهرکرد به عنوان نمونه انتخاب شده است. بعد ازانتخاب دو ماه اسفند 1385 و شهریور 1388 به عنوان ماههای دارای به ترتیب حداکثر و حداقل سطح آب (طی دوره ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
جغرافیا و برنامه ریزیجلد ۲۰، شماره ۵۸، صفحات ۲۸۱-۳۰۱
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023